Synthesis of (\pm) -myo-inositol 1,4,5-trisphosphate and the novel analogue (\pm) -myo-inositol 1,4-bisphosphate 5-phosphorothioate

Nicholas J. Noble a,b, Allan M. Cooke a and Barry V.L. Potter a,b

(Received February 22nd, 1992; accepted May 21st, 1992)

ABSTRACT

Novel routes to *myo*-inositol 1,4,5-trisphosphate and a phosphorothioate analogue involving mixed P(V) and P(III) chemistry have been developed. Phosphorylation of 2,3,6-tri-O-benzyl-*myo*-inositol 1-[di-(2,2,2-trichloroethyl) phosphate] with bis(2,2,2-trichloroethyl) phosphorochloridate gave a mixture of the 1,4- and 1,5-bisphosphate derivatives from which the 1,4-bis[di-(2,2,2-trichloroethyl) phosphate] 9 crystallised. Phosphitylation of HO-5 in 9 followed by oxidation yielded the 1,4-bis[di-(2,2,2-trichloroethyl) phosphate] 5-[di-(2-cyanoethyl) phosphate] which was deblocked using sodium in liquid ammonia to give (±)-*myo*-inositol 1,4,5-trisphosphate. Phosphitylation of HO-5 in 9 followed by sulphoxidation generated the 1,4-bis[di-(2,2,2-trichloroethyl) phosphate] 5-[di-(2-cyanoethyl) thiophosphate] which was deblocked to give (±)-*myo*-inositol 1,4-bisphosphate 5-phosphorothioate. Removal of the 2,2,2-trichloroethyl group, using sodium in liquid ammonia, represents a new method for removing this protecting group.

INTRODUCTION

1D-myo-Inositol 1,4,5-trisphosphate (IP₃, 1), released by receptor-mediated phospholipase C-catalysed cleavage of phosphatidylinositol 4,5-bisphosphate, is the second messenger that stimulates the release of intracellular calcium from internal stores^{1,2}. IP₃ is metabolised by two pathways³, namely, deactivation by a 5-phosphatase to give 1,4-IP₂ or phosphorylation by a 3-kinase to give 1,3,4,5-IP₄; the function of the latter route is still controversial⁴. IP₃ acts through an intracellular receptor which has been isolated⁵, cloned and sequenced^{6,7}, and reconstituted⁸.

We have sought routes for the synthesis of inositol phosphates⁹ and non-hydrolysable analogues such as phosphorothioates⁹⁻¹¹. The synthesis¹² of (\pm) -myo-ino-

8008 (315 (03 (\$65.00 @ 1803 - Tillion Cities B EULE) - B \$7 AH william - -

^a Department of Chemistry, University of Leicester, Leicester LE1 7RH (United Kingdom)

^b School of Pharmacy and Pharmacology and Institute for Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

Correspondence to: Professor B.V.L. Potter, School of Pharmacy and Pharmacology and Institute for Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom.

sitol 1,4,5-trisphosphorothioate (IPS₃, 2) has provided an analogue that is a potent releaser of calcium¹³⁻¹⁵ but resistant to phosphatase-catalysed deactivation¹⁶. Such analogues offer considerable potential for investigation and modification of the complex metabolism of IP_3 .

 (\pm) -myo-Inositol 1,4-bisphosphate 5-phosphorothioate (3) is much nearer in structure to IP₃ whilst still resistant to metabolism. We have reported the synthesis¹⁷ of the related analogue myo-inositol 4,5-bisphosphate 1-phosphorothioate (4) and now describe a route to (\pm) -3, employing mixed P(III) and P(V) chemistry using intermediates reported in the preceding paper ¹⁸. A preliminary account of this work has appeared ¹⁹. Since this work was completed, the synthesis of (\pm) -3 has been reported by another group ²⁰.

EXPERIMENTAL

TLC was performed on Silica Gel 60F (Merck) with detection by UV light or by spraying with methanolic phosphomolybdic acid or 5% palladium chloride in M HCl followed by heating. Flash-column chromatography was performed on silica gel (SORBSIL C60). ¹H NMR spectra (internal Me₄Si) were recorded with Bruker AM-300, Jeol JMN-GX270, and JMN-GX400 spectrometers. ¹³C NMR spectra (internal 1,4-dioxane) were run as DEPT experiments on the Bruker AM300 and Jeol JMN GX270 spectrometers. ³¹P NMR spectra (external aq 85% phosphoric acid) were recorded with Jeol FX-90O, Jeol GX270, Jeol JMN-GX400, and Bruker AM-300 spectrometers. The 2D correlation experiments (COSY, J-resolved) were acquired using standard pulse sequences²¹ on a Bruker AM300 spectrometer. Mass spectra were recorded at the S.E.R.C. Mass Spectrometry Service Centre, Swansea or by the Mass Spectrometry Service, University of Bath. FAB-mass spectra were carried out using m-nitrobenzyl alcohol or glycerol as the matrix. Melting points (uncorrected) were determined using a Reichert-Jung Thermo Galen Kofler Block. Ion-exchange chromatography was performed on an LKB-Pharmacia automated medium pressure liquid chromatography system equipped with a 'GP250 plus' gradient programmer, using columns packed with Q-Sepharose Fast Flow or DEAE Sephadex A-25 resin and eluting with a gradient of triethylammonium hydrogen carbonate (TEAB) buffer pH 8.0. Quantitative analysis of phosphate was performed using the Briggs assay²².

 (\pm) -2,3,6-Tri-O-benzyl-myo-inositol 1-[di-(2,2,2-trichloroethyl) phosphate]¹⁸ (7). —To a stirred solution of (\pm) -2,3,6-tri-O-benzyl-4,5-O-isopropylidene-myo-inositol²³ (5; 24.5 mg, 50 μ mol) in dry pyridine (5 mL) was added bis(2,2,2-trichloroethyl) phosphorochloridate (24 mg, 62.5 μ mol) during 2 min at room temperature. The mixture was stirred for 12 h at 20° when TLC (ether-pentane, 1:1) showed complete conversion of 5 ($R_{\rm F}$ 0.4) into the 1-[di-(2,2,2-trichloroethyl) phosphate] 6 $(R_{\rm E} 0.5)$. The reaction was quenched by the addition of water (0.5 mL), and the solution was kept at 20° for 1 h, diluted with more water (30 mL), and extracted with ether. The extract was washed with ice-cold M HCl (40 mL), satd aq KCl (40 mL), and satd aq NaHCO₃ (40 mL), then dried (MgSO₄), and the solvent was evaporated in vacuo. A solution of the residue in acetone-MeOH-M HCl (5:6:1, 50 mL) was kept at 20° for 1 h when TLC (ether-pentane, 2:1) showed complete conversion of 6 ($R_{\rm F}$ 0.90) into 7 ($R_{\rm F}$ 0.25). Anhyd NaOAc (100 mg) was added, the solvents were evaporated, water (50 mL) and ether (50 mL) were added to the residue, and the ether layer was washed with satd an KCl (2 × 50 mL), dried (MgSO₄), and concentrated. Recrystallisation of the residue from EtOAc-pentane (3:10) gave 7 (36 mg, 45 μ mol, 90%), mp 141–143°. FAB-mass spectrum: m/z 793 $\{[M(2^{37}Cl) + H]^+, 3.5\%; \text{ plus } (M + H)^+ \text{ with } 1,3-6^{37}Cl\}, 361 \{[HOPO-Minute of the content of$ (OCH₂CCl₃)₂]⁺, 0.5), 181 [(PhCHCH₂Ph)⁺, 18], 91 [(PhCH₂)⁺, 100]. NMR data (CDCl₂): 1 H (270 MHz), δ 2.90 (bs, 1 H, OH), 2.97 (bs, 1 H, OH), 3.25 (dd, 1H, ${}^{3}J$ 2.0 and 9.5 Hz, H-3), 3.49 (t, 1 H, ^{3}J 9.1 Hz, H-6), 4.00 (dt, 2 H, ^{3}J 9.5 and 11.7 Hz, H-4,5), 4.30–4.96 (m, 12 H, 3 PhC H_2 , 2 OCH₂CCl₃, and H-1,2), 7.24–7.41 (m, 15 H, 3 Ph); 13 C (67.8 MHz), δ 72.14 (d), 72.26 (t, PhCH₂ or OCH₂CCl₃), 74.79 (d), 75.09 (t, PhCH₂ or OCH₂CCl₃), 76.90 (t, PhCH₂ or OCH₂CCl₃), 79.24 (d), 79.79 (d), 94.60 (s, OCH₂CCl₃), 127.60, 127.70, 127.90, 128.05, 128.28, 128.51, 128.57 (15 C, d, Ph), 137.27, 138.01, 138.11 (3 C, s, Ph); 31 P (121.5 MHz), $\delta -6.75$ ($^{3}J_{PH}$ 6.7 Hz).

Anal. Calcd for C₃₁H₃₃Cl₆O₉P: C, 46.92; H, 4.19. Found: C, 47.00; H, 4.15. (\pm) -2,3,6-Tri-O-benzyl-myo-inositol 1,4-bis[di-(2,2,2-trichloroethyl) phosphate]¹⁸ (9).—A solution of 7 (70 mg, 87 μ mol) in dry pyridine (0.2 mL, 2.5 mmol) was added slowly to a stirred solution of bis(2,2,2-trichloroethyl) phosphorochloridate (70 mg, 185 μmol) in dry CH₂Cl₂ (15 mL) and stirring was continued for 6 h. TLC (ether-pentane, 2:1) then showed the conversion of 7 ($R_{\rm F}$ 0.14) into a major product ($R_{\rm F}$ 0.26). The solution was stirred with water (0.2 mL) for 30 min, then washed with M HCl (10 mL) and satd aq NaCl (10 mL), dried (MgSO₄), and concentrated. Short-column chromatography (1:2 ether-pentane, then 1:1 ether-pentane) of the residue gave a mixture (73.5 mg, 65% yield) of 8 and 9. Expeditious chromatography reduced the formation of cyclic phosphate and consequent phosphate migration. The mixture was triturated with pentane and the solid was recrystallised from EtOAc-pentane to give 9 (25 mg, 22 μ mol, 29%), mp 149-151°. FAB-mass spectrum: m/z 1135 {[M(2³⁷Cl) + H]⁺, 5%; also (M + H)⁺ with $1,3-7^{37}$ Cl}, 1044 [(M - CH₂Ph)⁺, 2], 954 [(M - 2CH₂Ph)⁺, 2], 361 {[HOPO(OCH₂CCl₃)₂]⁺, 0.5}, 181 [(PhCH₂CH₂Ph)⁺, 10], 91 [(PhCH₂)⁺, 100].

NMR data (CDCl₃): ¹H (300 MHz), δ 3.48 (dd, 1 H, ³J 2.6 and 9.8 Hz, H-3), 3.73 (t, 1 H, ³J 9.2 Hz, H-5), 4.01 (dd, 1 H, ³J 9.2 and 9.7 Hz, H-6), 4.31–4.72 (m, 12 H, C H_2 Ph, 4 CH₂CCl₃, and H-1,2), 4.69, 5.08 (ABq, 2 H, J 11.1 Hz, C H_2 Ph), 4.83 (dd, 1 H, ³J 9.2 and 9.8 Hz, H-4), 4.83, 4.91 (ABq, 2 H, J 11.5 Hz, C H_2 Ph), 7.26–7.43 (m, 15 H, 3 Ph); ³¹P (121.5 MHz), δ –6.58 ($J_{P,H}$ 8.6 Hz), -7.9 ($J_{P,H}$ 6.5 and 8.8 Hz).

Anal. Calcd for C₃₅H₃₅Cl₁₂O₁₂P₂: C, 37.04; H, 3.11. Found: C, 36.91; H, 3.08. (\pm)-myo-Inositol 1,4,5-trisphosphate (1).—A solution of 9 (0.0909 g, 80 μ mol) and N,N-diisopropylethylamine (0.0104 g, 80 \(mu\)mol) in dry acetonitrile (0.5 mL) was treated with chloro(2-cyanoethoxy)diisopropylaminophosphine²⁴ (0.0273 g, 100 μ mol) for 1 h at room temperature. ³¹P NMR spectroscopy then showed complete reaction (δ 150.3, -5.4). 2-Cyanoethanol (0.0071 g, 100 μ mol) and tetrazole $(0.0070 \text{ g}, 100 \mu\text{mol})$ were added, the mixture was left for 1 h (δ 138.5, -5.4), then cooled in ice, and tert-butyl hydroperoxide²⁴ (2 mL of a 3 M solution in toluene, 6 mmol) was added. The mixture was allowed to warm to room temperature, the solvents were evaporated, and a solution of the oily residue in a small volume of dry dioxane was added to Na (0.2 g, 8.7 mmol) in liquid ammonia (30 mL). After 15 min, the reaction was quenched with EtOH until the blue colour had dissipated, the ammonia was evaporated, and the residue was dissolved in water (100 mL). Dowex (H⁺) resin was added until the solution was acidic, the resin was removed, and the filtrate was neutralised with triethylamine (~ 1 mL), then concentrated at 0.1 mmHg. The residue was eluted from a column $(2.5 \times 14 \text{ cm})$ of DEAE Sephadex using a gradient of triethylammonium hydrogen carbonate, typically $100 \rightarrow 1000$ mM and 600 mL of each starting concentration. Fractions (~ 100) were collected at 1 per 8 min (or 250 drops) and assayed qualitatively using the Briggs phosphate test²². Elution at ~ 700 mM buffer gave 1. After evaporation of solvent, proton-decoupled ³¹P NMR spectroscopy of the residue showed resonances at δ 3.1, 4.6, and 4.8 with ${}^3J_{\rm PH}$ 8.2, 7.3, and 8.6 Hz, respectively. The spectrum was in accord with that for material from natural origin²⁶. The yield (49 μ mol, 62%) was calculated using a quantitative Briggs test. FAB-mass spectrum: m/z 419 [(M – H)⁻, 100%], 401 (8), 321 (13), 159 (18), 97 (20), 91 (60). NMR data (D₂O, pH 8): ¹H, δ 3.7 (dd, 1 H, ³J 9.8 and 2.9 Hz, H-3), 3.9 (t, 1 H, ³J 9.2 Hz, H-6), 4.0 (dt, 1 H, ^{3}J 9.1 and 2.5 Hz, H-1), 4.0 (q, 1 H, ^{3}J 8.8 Hz, H-5), 4.2 (q, 1 H, ^{3}J 8.9 Hz, H-4), 4.3 (t, 1 H, ^{3}J 2.6 Hz, H-2); ^{13}C (75.33 MHz), δ 70.9 (s, C-2), 73.3 (s, C-3), 73.8 (s, C-6), 77.6 (s, C-1), 79.1 (s, C-4), 80.7 (s, C-5).

 (\pm) -2,3,6-Tri-O-benzyl-myo-inositol 5-[di-(2-cyanoethyl) thiophosphate], 1,4-bis[di-(2,2,2-trichloroethyl) phosphate] (13).—To a solution of 9 (182 mg, 160 μmol) in N,N-diisopropylethylamine (45 μL, 250 μmol) and acetonitrile (2 mL) at 20° was added chloro(2-cyanoethoxy)diisopropylaminophosphine (53 mg, 224 μmol) with stirring to give the mixed phosphate/phosphoramidite 10. ³¹P NMR data (MeCN, 36.2 MHz): δ –5.79, –5.59 (2 s, Cl₃CCH₂OP), 151.63, [s, NCCH₂CH₂-OP(NⁱPr₂)] and other reagent peaks. Addition of tetrazole (21 mg, 300 μmol) and 2-cyanoethanol (22 μL, 300 μmol) then gave the mixed phosphate/phosphite 11.

³¹P NMR data (MeCN, 36.2 MHz): $\delta -5.45$, -5.65 (2 s, Cl₃CCH₂OP), 141.4 (s, NCCH₂CH₂OP) and other reagent peaks. Oxidation with sulphur (0.5 g, 16 mmol) in pyridine (5 mL) followed by column chromatography (pentane-EtOAc, 1:2) of the product on silica gel (15 g) gave 13 (94 mg, 70 μ mol, 44%), $R_{\rm F}$ 0.53. FAB-mass spectrum: m/z 1341 {[M(4³⁷Cl) + H]⁺, 6%; also (M + H)⁺ with 2,3,5-7³⁷Cl}, 1306 $[(M - CI)^+, 1]$, 1249 $[(M - H - CH_2Ph)^+, 1.2]$, 91 $[(CH_2Ph)^+, 100]$. NMR data $(CDCl_3)$: ¹H (270 MHz), 2.70–2.78 (m, 4 H, OCH₂CH₂CN), 3.57 (dd, 1 H, ³J 2.0 and 11.3 Hz, H-3), 3.66-3.80 (m, 2 H, H-6 and H-1), 4.00-4.75 (m, 18 H, 1.5 CH₂Ph, 4 OCH₂CCl₃, 2 OCH₂CH₂CN, and H-2,4,5), 4.80-5.00 (m, 3 H, 1.5 CH_2Ph), 7.26-7.44 (m, 15 H, 3 Ph); ¹³C (67.80 MHz), δ 18.46 (dt, J 8.9 Hz, POCH₂CH₂CN), 19.33 (dt, J_{CP} 8.9 Hz, POCH₂CH₂CN), 62.62 (dt, J_{CP} 4.4 Hz, OCH₂CH₂CN), 62.89 (t, POCH₂CH₂CN), 72.36 (d), 74.60 (d), 75.77 (t, OCH₂), 76.77 (d), 76.87 (t, OCH₂), 77.20 (t, OCH₂), 77.62, 79.08, 79.17 (3 C, d, Ins-C), 94.55 (s, CCl₃), 126.14, 127.70, 128.09, 128.22, 128.51, 128.74, (d, CH, Ph), 136.42, 137.69 (s, C, Ph); 31 P (109.37 MHz), δ -5.98 ($^{3}J_{P,H}$ 6.7 Hz), -5.92 ($^{3}J_{P,H}$ 6.7 Hz), 67.00 (${}^{3}J_{PH}$ 6.7 Hz).

(±)-myo-Inositol 1,4-bisphosphate 5-phosphorothioate (3).—Ammonia (50 mL) was condensed onto Na (0.3 g) and the mixture was stirred for 5 min. The ammonia (40 mL) was then distilled onto Na (0.2 g, 9 μmol), giving a deep blue colour. To this mixture at -78° was added a solution of 13 (80 mg, 60 μmol) in dry dioxane (0.2 mL) during 5 min. The mixture was stirred for 2 min, the reaction was quenched by the addition of 2-propanol until the blue colour was lost, and the solution was allowed to warm to room temperature, then concentrated in vacuo. A solution of the solid residue in water (50 mL) was mixed with Dowex (H⁺) resin until neutral, then filtered, and basified with triethylamine (pH 9). The salt was further purified by chromatography on DEAE Sephadex-A25, using triethylammonium hydrogen carbonate buffer (0.1 \rightarrow 1 M) to give 3 (19.6 mg, 26 μmol, 88%), eluted at \sim 750 mM buffer. NMR data (D₂O, pH 9): ¹H (300 MHz), δ 3.70 (dd, 1 H, ³J 2.6 and 9.5 Hz, H-3), 3.90 (m, 2 H), 4.10–4.20 (m, 2 H), 4.30 (t, 1 H, ³J 2.6 Hz, H-2); ³¹P (109.4 MHz), δ 3.25 (³J_{P,H} 6.7 Hz, P-1 or P-4), 4.35 (³J_{P,H} 6.7 Hz, P-5).

RESULTS AND DISCUSSION

Phosphorylation of (\pm) -2,3,6-tri-O-benzyl-myo-inositol-1-[di-(2,2,2-trichloroethyl) phosphate] (7) with bis(2,2,2-trichloroethyl) phosphorochloridate in dichloromethane and pyridine gave a mixture (65%) of the 1,5- (8) and the 1,4-bisphosphate (9) derivatives¹⁸, from which 9 (29%) crystallised leaving a $\sim 2:1$ mixture of 8 and 9 (¹H and ³¹P NMR data).

The identification of 9 by 1 H NMR spectroscopy was complicated by the overlapping of the signals of interest, i.e., the inositol ring protons, by AB and ABX systems from the benzyl and phosphotriester moieties, respectively (Fig. 1). For the signal at δ 3.48, the ^{3}J values are 2.6 and 9.8 Hz indicative of eq-eq or

eq-ax and ax-ax protons. Since H-2 is the only ring proton that is equatorial, H-1 and H-3 are the only ring protons that will have ax-eq and ax-ax couplings. Applying this information to the ${}^{1}H^{-1}H$ COSY (Fig. 2), it is plausible to assume that, if the signal at δ 3.48 is due to H-1, there are two possible assignments, arising from the fact that the first cross-peak encountered (δ 4.41) could be the result of correlation with H-2 or H-6. The resulting two sequences are as follows: δ 3.48, H-1; 4.41, H-2; 4.34, H-3; 4.01, H-4; 3.73, H-5; 4.83, H-6; 3.48, H-1; and 3.48, H-1; 4.41, H-6; 4.34, H-5; 4.01, H-4; 3.73, H-3; 4.83, H-2; 3.48, H-1. Similarly, by assuming that the signal at δ 3.48 is for H-3, there are another two plausible sequences possible, namely, δ 3.48, H-3; 4.41, H-4; 4.34, H-5; 4.01, H-6; 3.73, H-1; 4.83, H-2; 3.48, H-3; or 3.48, H-3; 4.41, H-2; 4.34, H-1; 4.01, H-6; 3.73, H-5; 4.83, H-4; 3.48, H-3.

In order to identify the correct sequence, a 2D J-resolved ¹H NMR spectrum was obtained (Fig. 3) in which the couplings to ³¹P were not phase modulated. The signal (dd) at δ 3.48 has two vicinal homonuclear couplings of 2.6 (eq-eq or eq-ax) and 9.8 Hz (ax-ax). As there is no evidence of any heteronuclear coupling, it is possible to assign the signal to H-3. The signal at δ 3.73 (apparent t) has two ³J_{ax,ax} couplings of 9.2 Hz and that at δ 4.01 (dd) has ³J_{ax,ax} 9.2 and 9.7 Hz. The signal (ddd) at δ 4.34 has ³J_{H,H} values of 2.6 (eq-eq or eq-ax) and 9.7 Hz (ax-ax), respectively, in f₁ and ³J_{P,H} 8.8 Hz in f₂. Thus, it is possible to assign the signal at δ 4.34 to H-1 and that (apparent t) at δ 4.41 with two ³J values of 2.6 Hz to H-2.

Finally, an assignment of the key ¹H resonance at δ 4.83 can be made. As with H-1, this proton resonance (ddd) had $J_{ax,ax}$ values of 9.2 and 9.8 and ³ $J_{P,H}$ 8.5 Hz. Therefore, the sequence of the ¹H-¹H COSY (Fig. 2) is as follows: δ 3.48, H-3;

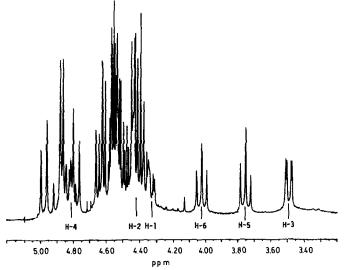


Fig. 1. 300-MHz ¹H NMR spectrum for a solution of 9 in CDCl₃.

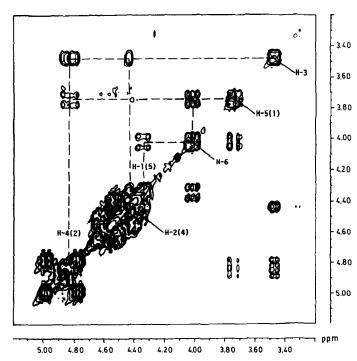


Fig. 2. 2D ¹H-¹H COSY contour map of a solution of **9** in CDCl₃: 32 scans for each of 256 experiments with 512 data points; spectral width, 525 Hz; sine-bell apodisation in each domain with diagonal symmetrisation.

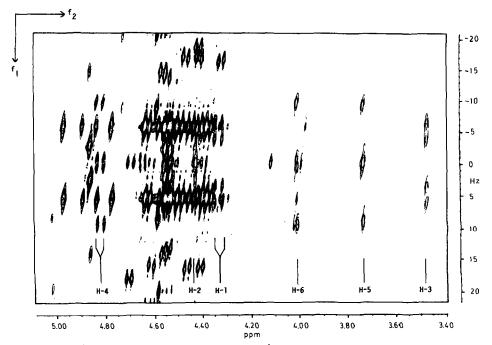


Fig. 3. 2D ¹H-¹H Homonuclear *J*-resolved correlated ¹H NMR spectrum of a solution of 9 in CDCl₃: 16 scans for each of the 64 experiments with 128 data points; spectral width, 20 Hz in the f₁ domain, 316 Hz in the f₂ domain; sine-bell apodisation in each dimension with subsequent tilting and symmetrisation.

4.41, H-2; 4.34, H-1; 4.01, H-6; 3.73, H-5; 4.83, H-4; 3.48, H-3. The phosphorus coupling observed for H-1 and H-4 enables the unambiguous assignment of $\bf 9$ as (\pm) -2,3,6-tri- $\bf 0$ -benzyl- $\bf myo$ -inositol 1,4-bis[di-(2,2,2-trichloroethyl) phosphate].

Using a method similar to that reported²⁴ in the synthesis of IP₃, the 1,4-bis-phosphate **9** was phosphitylated with chloro(2-cyanoethoxy)diisopropylaminophosphine to give the phosphoramidite **10**. Reaction of **10** in situ with 2-cyanoethanol-tetrazole gave the phosphite **11**, which was not isolated but oxidised to the trisphosphate **12** with *tert*-butyl hydroperoxide. In contrast to 1,2,3,4-tetra-O-benzyl-myo-inositol 4,5-bis[di-(2-cyanoethyl) phosphite], where an unusual ${}^5J_{\rm P,P}$ coupling was noted²⁵, no such coupling was observed for the mixed P(III)/P(V) species **11**, indicating that the two P(III) centres are required for such coupling.

Deprotection of 12, using sodium in liquid ammonia, gave (\pm) -myo-inositol 1,4,5-trisphosphate (1), which was isolated as the triethylammonium salt by chromatography on DEAE Sephadex A-25. Compound 1 was identical biologically to material prepared by the previous route²⁴ in so far as it bound to the cerebellar IP₃ receptor and mobilised Ca²⁺ from intracellular stores of GH₃ cells with a potency similar to that of IP₃, and it possessed spectral properties in accord with those reported for material of natural origin²⁶.

To the best of our knowledge, this method for the removal of the 2,2.2-trichloroethyl group is novel. This group has been used to protect carboxylic acids²⁷, and the phosphate in nucleotides²⁸ and, as the trichloroethoxycarbonyl group, to protect hydroxyl and amino groups²⁹. The 2,2,2-trichloroethyl group can be removed using zinc dust in acetic acid²⁸, zinc-copper couple in N,N-dimethylformamide²⁸, zinc-p-toluenesulphonic acid in pyridine^{28,30}, zinc with silver carbonate in acetic acid³¹, electrolysis in methanol³² or in N,N-dimethylformamide³³, tetrabutylammonium fluoride³⁴, sodium borohydride under the catalysis of selenium in N, N-dimethylformamide³⁵, sodium naphthalene in hexamethylphosphoric triamide³⁶, or Pd-catalysed hydrogenolysis in aqueous ethanol³⁷. Preliminary experiments on the deprotection of 2,2,2-trichloroethoxymethyl ethers, using lithium in liquid ammonia, have been reported³⁸. However, the application of most of these methods to molecules containing phosphorothioate triesters could lead to desulphuration. The new method involves treatment with sodium in liquid ammonia and the mechanism proposed is $14 \rightarrow 15 \rightarrow 16 \rightarrow 17$. The procedure also removes benzyl groups and avoids potential problems in catalytic hydrogenolysis caused by poisoning of the catalyst by phosphorothioates. Sodium in liquid ammonia also removes 2-cyanoethyl groups by β -elimination²⁴.

The mixed phosphate/phosphite 11 was also oxidised with sulphur in pyridine to give the mixed phosphate/phosphorothioate 13, which was deblocked with sodium in liquid ammonia to give (\pm) -myo-inositol 1,4-bisphosphate 5-phosphorothioate (3). The ³¹P NMR spectrum of 3 (Fig. 4) shows clearly two resonances at δ_p 3.25 and 4.35 ppm, assignable to the two phosphate groups and a resonance at δ_p 43.24 ppm assignable to the single 5-phosphorothioate group.

Racemic 3 is a full agonist at the IP₃ receptor and a potent mobiliser of intracellular Ca²⁺, being only some 7-fold less potent than IP₃ in permeabilised SH-SY5Y neuroblastoma cells (EC₅₀ values: IP₃, 0.11 μ M; IP₃-5S, 0.8 μ M)¹⁵ and more potent than IPS₃. If, following the precedent ^{13,14} for L-IP₃, L-IP₃-5S is inactive in Ca²⁺ mobilisation, then D-IP₃-5S should be only a few-fold less potent than IP₃. Racemic 3 is resistant to IP₃ 5-phosphatase-catalysed cleavage and is a potent inhibitor of this enzyme (K_i 6.8 μ M), but, apparently, is a substrate for

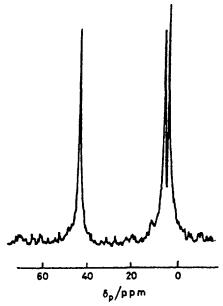


Fig. 4. 24.15-MHz ³¹P NMR spectrum of 3 (ca. 70 mM solution in D₂O, pH 8).

IP₃-3-kinase¹⁵. These latter properties indicate that (\pm) -3 is a potentially valuable probe of the polyphosphinositide pathway of signal transduction.

ACKNOWLEDGMENTS

This work was supported by S.E.R.C. (Molecular Recognition Initiative and a Research Studentship to A.M.C.) and, in part, by Merck Sharp and Dohme. We thank the Royal Society for an equipment grant, Dr. D.L. Turner for advice and assistance concerning the 2D NMR experiments, Dr. R. Gigg for authentic samples of intermediates 7 and 9, Professor S.R. Nahorski for biological evaluation, and Ms S. Alston for manuscript preparation. One of us (B.V.L.P.) is a Lister Institute Fellow.

REFERENCES

- 1 M.J. Berridge, Annu. Rev. Biochem., 56 (1987) 159-193.
- 2 M.J. Berridge and R.F. Irvine, Nature (London), 341 (1989) 197-205.
- 3 S.R. Nahorski and B.V.L. Potter, Trends Pharmacol. Sci., 10 (1989) 139-144.
- 4 A. Lückhoff and D.E. Clapham, Nature (London), 355 (1992) 356-358.
- 5 S. Supattapone, P.F. Worley, J.M. Baraban, and S.H. Snyder, J. Biol. Chem., 263 (1988) 1530-1534.
- 6 T. Furuichi, S. Yoshikawa, A. Miyawaki, A. Wada, N. Maeda, and K. Mikoshiba, *Nature (London)*, 342 (1989) 32-38.
- 7 G.A. Mignery, C.L. Newton, B.T. Archer, and T.C. Südhof, J. Biol. Chem., 265 (1990) 12679-12685.
- 8 C.D. Ferris, R.L. Huganir, S. Supattapone, and S.H. Snyder, Nature (London), 342 (1989) 87-89.
- 9 B.V.L. Potter, Nat. Prod. Rep., 7 (1989) 1-24.

- 10 B.V.L. Potter, in S.R. Nahorski (Ed.), Transmembrane Signalling, Intracellular Messengers and Implications for Drug Development, Wiley, Chichester, 1990, pp. 207-239.
- 11 B.V.L. Potter, ACS Symp. Ser., 463 (1991) 186-201.
- 12 A.M. Cooke, R. Gigg, and B.V.L. Potter, J. Chem. Soc., Chem. Commun., (1987) 1525-1526.
- 13 C.W. Taylor, M.J. Berridge, A.M. Cooke, and B.V.L. Potter, Biochem. J., 259 (1989) 645-650.
- 14 J. Strupish, A.M. Cooke, B.V.L. Potter, R. Gigg, and S.R. Nahorski, *Biochem. J.*, 253 (1988) 901–905.
- 15 S.T. Safrany, R.J.H. Wojcikiewicz, J. Strupish, J. McBain, A.M. Cooke, B.V.L. Potter, and S.R. Nahorski, Mol. Pharmacol., 39 (1991) 754-761.
- 16 A.L. Willcocks, A.M. Cooke, B.V.L. Potter, and S.R. Nahorski, Eur. J. Pharmacol., 155 (1988) 181–183.
- 17 D. Lampe and B.V.L. Potter, J. Chem. Soc., Chem. Commun., (1990) 1500-1501.
- 18 T. Desai, A. Fernandez-Mayoralas, J. Gigg, R. Gigg, and S. Payne, *Carbohydr. Res.*, 234 (1992) 157-175.
- 19 A.M. Cooke, N.J. Noble, S. Payne, R. Gigg, and B.V.L. Potter, J. Chem. Soc., Chem. Commun., (1989) 269-271.
- 20 C.E. Dreef, G.W. Mayr, J.P. Jansza, H.C.P.F. Roelen, G.A. van der Marel, and J.H. van Boom, Bioorg. Biomed. Chem. Lett., 1 (1991) 239-242.
- 21 K. Nagayama, A. Kumar, K. Wüthrich, and R.R. Ernst, J. Magn. Reson., 40 (1980) 321-334.
- 22 A. Briggs, J. Biol. Chem., 53 (1922) 13-16.
- 23 J. Gigg, R. Gigg, S. Payne, and R. Conant, J. Chem. Soc., Perkin Trans. 1, (1987) 423-429.
- 24 A.M. Cooke, R. Gigg, and B.V.L. Potter, Tetrahedron Lett., 28 (1987) 2305-2308.
- 25 M.R. Hamblin, R. Gigg, and B.V.L. Potter, J. Chem. Soc., Chem. Commun., (1987) 626-628.
- 26 J.C. Lindon, D.J. Baker, R.D. Farrant, and J.M. Williams, Biochem. J., 233 (1986) 275-277.
- 27 R.B. Woodward, K. Heusler, J. Gosteli, P. Naegeli, W. Oppolzer, R. Ramage, S. Ranganathan, and H. Vorbrüggen, J. Am. Chem. Soc., 88 (1966) 852-852.
- 28 F. Eckstein and K.H. Scheit, Angew. Chem. Int. Ed. Engl., 6 (1967) 362.
- 29 T.B. Windholz and D.B.R. Johnston, *Tetrahedron Lett.*, 27 (1967) 2555–2557.
- 30 J.G. Lammers and J.H. van Boom, Recl. Trav. Chim. Pays-Bas, 98 (1979) 243-250.
- 31 O. Hindsgaul, T. Norberg, L. Le Pendu, and R.U. Lemieux, Carbohydr. Res., 109 (1982) 109-142.
- 32 M.F. Semmelhack and G.E. Heinsohn, J. Am. Chem. Soc., 94 (1972) 5139-5140.
- 33 M.A. Casadei, F.M. Moracci, D. Occhialini, and A. Inesi, J. Chem. Soc., Perkin Trans. 2, (1987) 1887–1892.
- 34 M. Namikoshi, B. Kundu, and K.L. Rinehart, J. Org. Chem., 56 (1991) 5464-5466.
- 35 Z.-Z. Huang and X.-J. Zhou, Synthesis, 9 (1989) 693-694.
- 36 R.L. Letsinger and W.B. Lunsford, J. Am. Chem. Soc., 98 (1976) 3655-3661.
- 37 A. Paquet, Int. J. Peptide Protein Res., 39 (1992) 82-86.
- 38 R.M. Jacobson and J.W. Calder, Synth. Commun., 9 (1979) 57-62.